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1 IMPLEMENTATION DETAILS
All experiments are carried out on a single NVIDIA RTX 3090 GPU.
We use the Adam optimizer for 3D Gaussian feature attributes, with
learning rates of 0.02 and 0.001 for the SH feature’s zero-frequency
and high-frequency components, respectively. Each composition
pair’s optimization takes less than 5 minutes in total. During the
S-phase, we sample 5,000 points as a batch from the 3D Gaussians’
point cloud for each iteration rather than using the entire set; oth-
erwise, the training speed will be slow. Throughout the KNN and
palette collection, customized CUDA kernels are used to accelerate
the process in less than three seconds. The entire optimization takes
6,000 iterations, consistently maintaining the loss in the S-phase
and boundary conditions, with the T-phase beginning at 4,500 and
continuing until completion.

2 FAIRNESS OF COMPARISON ON REAL-WORLD DATA
We compared our method with SeamlessNeRF [Gong et al. 2023],
but we encountered a disparity when conducting our experiment
on real-world data, prompting us to enhance the baseline perfor-
mance using our approach. The discrepancy arises from the fact
that SeamlessNeRF, built upon TensorRF [Chen et al. 2022], was
not implemented for editing scene geometry, such as segmentation
and cropping. In real-world scenarios, precise masks for target ob-
jects are often unavailable, thus making the SeamlessNeRF hardly
directly applied to real-world data. To compare with SeamlessNeRF
on the real-world data, we utilized the interactive editing capability
of our framework to generate alpha channels rendered by 3DGS
[Kerbl et al. 2023] to crop the target object from the background. Ad-
ditionally, to ensure editing effects are based on clean density fields,
we introduced a random background argumentation to mitigate
artifacts during the SeamlessNeRF training process:

L𝑎𝑙𝑝ℎ𝑎𝑐𝑜𝑙𝑜𝑟 =
𝑤𝑞 (𝑐𝑞 − 𝛿𝑞) − 𝛼𝑞 (𝑐𝑞 − 𝛿𝑞)

2
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where𝑤𝑞 is the accumulated weights along ray 𝑞 in NeRF’s render
equation, and 𝛼𝑞 is the alpha channels generated for supervision. In
the equation, 𝑐𝑞 is the color computed by our model, and 𝑐𝑞 is the
corresponding ground-truth color. The black and white background
colors 𝛿𝑞 are randomly selected for each ray 𝑞 with equal possibility
in our implementation. Fig. 1, shows that without this loss, too many
artifacts prevent SeamlessNeRF from performing seamless editing
effects. Therefore, the fairness of comparison between ours and the
baseline’s effects is contributed by the strength of our approach and
some additional efforts, which, in turn, gives proof of our superiority.

2.1 Choice of Benchmark
Given the interactive nature of our method, the outcomes in all
cases hinge on users’ selections of compelling examples and their
efforts to craft semantically meaningful results. Finding an existing
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Fig. 1. Improvement for SeamlessNeRF. With the help of mask loss and
the mask provided by our method, artifacts are significantly suppressed,
resulting in a fair comparison.

dataset tailored to this specific task proved challenging. Conse-
quently, we opted to utilize datasets such as BlendedMVS [Yao et al.
2020], Mip360 [Barron et al. 2022], and the synthetic data employed
in SeamlessNeRF [Gong et al. 2023]. It is worth mentioning that
while the latter dataset is not derived from real-world sources, we
have included it to underscore the discernible disparities between
our approach and the baseline.

3 MORE QUALITATIVE COMPARISON
We present a more extensive qualitative comparison, encompassing
all cases in our benchmark. Direct visualization is considered to be
more comprehensive than a user study. In Fig. 2, the rows (from
top to bottom) represent cases numbered from 1 to 21. Cases 1-13
are derived from real-world data obtained from BlendedMVS and
Mip360, while cases 14-21 originate from synthesis data used in
SeamlessNeRF. The columns (from left to right) depict part models,
raw composites, and two views of our method and the baseline,
respectively.

4 MORE QUANTITATIVE COMPARISON

4.1 Evaluating with VQA
The VQA (Video Quality Assessment) method acts as a tool to assess
video quality, which has become increasingly essential due to the
rapid increase of 2D user-generated content. Therefore, instead
of evaluating the 3D models directly, we utilize VQA [Wu et al.
2023] to assess the quality of the videos generated from our models.
To produce coherent video sequences, we configure the camera
orbit to showcase the models and ensure that the camera remains
focused on the models at all times. Specifically, for results where the
target field occupies a substantial space, circular camera orbits are
employed to provide panoramic views, while for those occupying
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specific angles, spiral camera orbits are utilized (refer to our videos
for visual demonstration).

Statistic. Table 2 provides detailed information from the table
presented in the main text. In Tab. 2, a positive number indicates
that our method outperforms the baseline. The column Δ𝑡 repre-
sents the difference in the technical score, which typically relates
to distortions or artifacts, while the column Δ𝑎 represents the dif-
ference in the aesthetic score, which typically reflects preferences
and recommendations regarding content. It is important to note
that the Δ𝑎 metric for certain cases (e.g., case 10, case 12) may not
accurately reflect the true performance. This is because the VQA
model struggles to comprehend seamless editing effects and instead
favors situations with more diverse colors present.

4.2 Why Not FID.
To compare using FID, we collected training data from the bench-
mark to serve as the ground truth set, enabling the identification of
the distribution of realistic objects. However, the FID scores for both
methods exceeded 300, far beyond the normal range of previous
generation tasks. This suggests that comparing with the FID metric
makes no sense. The main reason is that the created composites
themselves did not appear in any dataset. Additionally, in some
cases, the backgrounds were missing, further complicating the FID
algorithm’s assessment.

ours SeamlessNeRF
average optimizing time ↓ < 4 min > 1 h
real-time adjustment YES NO

Table 1. Speed Comparison between ours and the baseline.

5 SPEED COMPARISON
Table 1 presents a concise comparison of speed, demonstrating that
our method also surpasses the baseline in terms of optimization
efficiency. In addition to the advantage of our method in terms of
user time consumption during interactive adjustments, particularly
noteworthy is the optimization speed: SeamlessNeRF requires over
one hour, whereas ours takes less than 5 minutes. For visualizing
the optimization process, please refer to our video.
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Fig. 2. Case 1-7 are displayed in rows from top to bottom. The rightmost two columns present the baseline results for comparison.
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Fig. 2. Case 8-14 are displayed in rows from top to bottom. The rightmost two columns present the baseline results for comparison.
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Fig. 2. Case 15-21 are displayed in rows from top to bottom. The rightmost two columns present the baseline results for comparison.



6 • Xinyu Gao, et al.

LIVE_VQC KoNViD-1k LSVQ_Test LSVQ_1080P YouTube_UGC
Δ𝑡 ↑ Δ𝑎 ↑ Δ𝑡 ↑ Δ𝑎 ↑ Δ𝑡 ↑ Δ𝑎 ↑ Δ𝑡 ↑ Δ𝑎 ↑ Δ𝑡 ↑ Δ𝑎 ↑

case1 -0.075 +0.149 -0.058 +0.142 -0.049 +0.140 -0.059 +0.148 -0.066 +0.094
case2 +0.887 +0.453 +0.804 +0.394 +0.760 +0.376 +0.808 +0.442 +0.841 +0.413
case3 +0.057 +0.326 +0.052 +0.284 +0.049 +0.270 +0.052 +0.318 +0.054 +0.298
case4 +0.706 -0.337 +0.640 -0.293 +0.605 -0.278 +0.642 -0.327 +0.669 -0.307
case5 +0.077 +0.078 +0.070 +0.067 +0.066 +0.064 +0.070 +0.075 +0.073 +0.070
case6 +0.370 +0.051 +0.335 +0.044 +0.317 +0.043 +0.337 +0.050 +0.351 +0.047
case7 +0.528 +0.132 +0.478 +0.115 +0.454 +0.109 +0.482 +0.129 +0.501 +0.121
case8 +0.018 -0.179 +0.016 -0.156 +0.015 -0.148 +0.016 -0.174 +0.017 -0.163
case9 +1.053 +0.426 +0.953 +0.372 +0.902 +0.355 +0.957 +0.416 +0.997 +0.390
case10 +0.887 -0.039 +0.804 -0.033 +0.761 -0.032 +0.807 -0.037 +0.841 -0.035
case11 +0.284 +0.018 +0.257 -0.022 +0.244 +0.012 +0.259 -0.027 +0.269 -0.014
case12 +0.072 -0.293 +0.065 -0.256 +0.062 -0.242 +0.065 -0.285 +0.068 -0.268
case13 +0.349 -0.120 +0.317 -0.104 +0.299 -0.099 +0.318 -0.116 +0.331 -0.109
case14 +0.459 +0.014 +0.416 -0.012 +0.392 +0.011 +0.417 +0.014 +0.435 -0.013
case15 +0.101 -0.426 +0.092 -0.371 +0.087 -0.353 +0.092 -0.415 +0.097 -0.390
case16 +0.040 +0.091 +0.036 +0.079 +0.034 +0.076 +0.036 +0.089 +0.038 +0.082
case17 +0.053 -0.014 +0.048 +0.012 -0.015 +0.012 -0.028 +0.014 -0.050 -0.013
case18 +0.386 +0.117 +0.349 +0.101 +0.330 +0.097 +0.350 +0.114 +0.366 +0.107
case19 +0.019 -0.205 +0.017 -0.178 +0.016 -0.170 +0.017 -0.199 +0.018 -0.187
case20 -0.088 -0.091 -0.079 -0.079 -0.075 -0.075 -0.081 -0.089 -0.083 -0.083
case21 +0.022 -0.031 +0.019 -0.027 +0.018 -0.015 +0.020 -0.030 +0.021 -0.018

average +0.295 +0.006 +0.268 +0.004 +0.251 +0.007 +0.266 +0.005 +0.276 +0.001
Table 2. Per-caseQuantitative Results. We color each cell as better and worse.


	1 Implementation Details
	2 Fairness of Comparison on Real-world Data
	2.1 Choice of Benchmark

	3 More Qualitative Comparison
	4 More Quantitative Comparison
	4.1 Evaluating with VQA
	4.2 Why Not FID.

	5 Speed Comparison
	References

