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Fig. 1. Our method can seamlessly stitch multiple 3D Gaussian fields together [Kerbl et al. 2023] interactively, resulting in new, highly detailed, and realistic
objects. All of the geometric parts or models are derived from the BlendedMVS [Yao et al. 2020] and Mip360 [Barron et al. 2022] datasets.

Using parts of existing models to rebuild new models, commonly termed as
example-based modeling, is a classical methodology in the realm of com-
puter graphics. Previous works mostly focus on shape composition, making
them very hard to use for realistic composition of 3D objects captured from
real-world scenes. This leads to combining multiple NeRFs into a single 3D
scene to achieve seamless appearance blending. However, the current Seam-
lessNeRF method struggles to achieve interactive editing and harmonious
stitching for real-world scenes due to its gradient-based strategy and grid-
based representation. To this end, we present an example-based modeling
method that combines multiple Gaussian fields in a point-based represen-
tation using sample-guided synthesis. Specifically, as for composition, we
create a GUI to segment and transform multiple fields in real time, easily
obtaining a semantically meaningful composition of models represented by
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3D Gaussian Splatting (3DGS). For texture blending, due to the discrete and
irregular nature of 3DGS, straightforwardly applying gradient propagation
as SeamlssNeRF is not supported. Thus, a novel sampling-based cloning
method is proposed to harmonize the blending while preserving the original
rich texture and content. Our workflow consists of three steps: 1) real-time
segmentation and transformation of a Gaussian model using a well-tailored
GUI, 2) KNN analysis to identify boundary points in the intersecting area
between the source and target models, and 3) two-phase optimization of
the target model using sampling-based cloning and gradient constraints.
Extensive experimental results validate that our approach significantly out-
performs previous works in terms of realistic synthesis, demonstrating its
practicality.

CCS Concepts: • Computing methodologies→ Image-based rendering.

Additional Key Words and Phrases: Neural Rendering, 3D Model Synthesis,
Composition

1 INTRODUCTION
As we all know, 3D scenes typically contain multiple 3D objects
composed of various parts. Example-based modeling [Funkhouser
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et al. 2004] is a technique that involves combining different parts
from different objects to create new ones. This is a common tool
in Computer Graphics (CG) modeling, where objects are designed
in a non-realistic CG fashion. In this paper, we consider realistic
example-based modeling, where all parts are captured from the real
world, as shown in Fig. 1. This task becomes prominent with the
emergence of Neural Radiance Fields, which enables photorealistic
3D reconstruction and rendering.
Among the various approaches designed for 3D modeling from

multiple neural fields, a portion of the research [Gao et al. 2023; Liu
et al. 2023a] is devoted to the inverse rendering process to achieve
consistent lighting and shadowing. But these methods rarely con-
sider a situation where the harmonious and seamless effect is re-
quired for merging or unifying two or more neural fields. Seamless-
NeRF [Gong et al. 2023] is the first work to tackle seamless merging,
attempting to address the consistency problem by propagating gra-
dients on synthesis cases. Nonetheless, due to its implicit grid-based
representation, SeamlessNeRF can neither achieve fine-grained edit-
ing (e.g. the face in the Santa case in Fig. 2) under real-world cases
nor provide an interactive workflow in real-time. Additionally, its
gradient-based strategy can produce significant artifacts (see Fig. 9)
and fails to propagate structural characteristics when the condition
becomes more complex (e.g., the bottle in the left-upper corner in
Fig. 1). Therefore, achieving a harmonious and photorealistic stitch-
ing result on real-world data remains an unsolved challenge that
needs further exploration.
To address the limitations mentioned above, we propose a new

method for interactive editing and stitching multiple parts using
explicit shape representation in 3D Gaussian Splatting. Our method
has two significant advantages. First, its point-based representation
enables fine-grained editing, allowing for detailed appearance opti-
mization and the removal of artifacts. Second, its rasterizer pipeline
provides a real-time interactive editing environment. Due to the
discrete and irregular nature of 3D-GS, it is not feasible to conduct
gradient propagation as SeamlessNeRF. Thus, we introduce a novel
sampling-based optimization strategy that can seamlessly propagate
not only color tones but also structural characteristics. Our eval-
uation benchmarks are primarily derived from real-world scenes,
demonstrating our superior ability to handle complex cases.
More specifically, our pipeline takes multiple scenes as input,

containing source and target objects represented by 3DGS. We then
carefully segment these objects and apply rigid transformations in
order to create a semantically meaningful composite in 3D space. An
intersection boundary region between the objects is also identified
before blending. The next is the key step in our process which
aims to optimize the appearance of the target objects so that their
texture and color match those of the source object. We achieve
this by using a two-phase optimization scheme: the first phase
involves sampling-based cloning (S-phase), and the second phase
involves clustering-based tuning (T-phase). During the S-phase, the
target field is optimized using a heuristic sampling strategy that
considers the structural characteristics at the boundary. Additionally,
an efficient 2D gradient constraint is applied to preserve the original
texture content of the target field. However, optimizing solely with
S-phase may lead to the appearance of artifacts or unintended color
features that do not fit with the overall composite. Therefore, we

address this issue with T-phase, where we utilize a pre-calculated
feature palette derived from the source field through aggregation
and clustering. Subsequently, this palette is applied to tune the target
field. It is important to note that the two-phase optimization is a joint
procedure, where losses from the S-phase are always maintained
while losses from the T-phase are added later during optimization.

In summary, our method makes the following contributions:
• The first work to use 3D-GS for realistic and seamless part com-

positing, enabling real-world example-based modeling.
• A novel sampling-based optimization strategy is proposed, with
which not only the texture color but also the structural charac-
teristics can be propagated seamlessly.

• A user-friendly GUI is carefully designed to support an interactive
workflow of the modeling process in real time.

2 RELATED WORK

2.1 Example-based Seamless Editing
Seamless editing, particularly in the context of example-based image
and texture synthesis, is a well-studied editing technique in com-
puter graphics and image processing. As for textures, example-based
texture synthesis [Efros and Leung 1999; Wei et al. 2009] intends to
seamlessly create textures at any size from exemplars, which has
beenwidely employed in contemporary graphics pipelines and game
engines. In 2D image synthesis, patch-based synthesis techniques
have been widely researched to seamlessly combine visually incon-
sistent images [Darabi et al. 2012; Pérez et al. 2023]. Meanwhile, Kwa-
tra et al. [2005] introduced “Texture Optimization,” which transfers
photographic textures to a target image for example-based synthesis.
To facilitate structural image editing tasks, “PatchMatch” [Barnes
et al. 2009] found approximate nearest-neighbor correspondences
between patches in images for seamless image region reshuffling. In
terms of seamless editing in 3D objects, Rocchini et al. [1999] and
Dessein et al. [2014] propose methods for stitching and blending
textures on 3D objects, respectively, while Yu et al. [2004] use the
Poisson equation to implicitly modify the original mesh geometry
via gradient field manipulation. Additionally, example-based model-
ing can also generate novel models from parts of existing models
[Funkhouser et al. 2004], allowing untrained users to create inter-
esting and detailed 3D designs, such as city building [Merrell 2007],
things arrangements [Fisher et al. 2012], mesh segmentation [Katz
et al. 2005], and merging [Kreavoy et al. 2007]. Recently, deep learn-
ing methods have leveraged generative models to generate diverse
instances from a single exemplar [Li et al. 2023a; Wu and Zheng
2022] or a cluster of examples [Zhang et al. 2023]. Definitely, the
example-based methodology is a valuable tool for creating diverse
and novel content, which can reduce the workload for the artists or
can be leveraged by procedural content generation programs. In our
work, we combine this valuable idea with the advanced technique
of 3DGS to create content directly from the real world.

2.2 Neural Scene Composition
Neural scene composition primarily involves the synthesis of multi-
ple neural objects represented by neural fields, such as free-viewport
video [Lin et al. 2022; Wang et al. 2023; Zhang et al. 2021], au-
tonomous driving [Fu et al. 2022; Kundu et al. 2022; Ost et al. 2021;
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Fig. 2. Overview of our framework. Our novel pipeline provides an interactive editing experience and has real-time previewing capabilities to visualize the
optimizing process, allowing for the seamless and interactive combination of multiple Gaussian fields.

Tancik et al. 2022; Yang et al. 2023; Zhou et al. 2023] and scene
understanding [Kerr et al. 2023; Shuai et al. 2022; Wu et al. 2022;
Yang et al. 2021]. And for those composition tasks with multiple
pre-trained models, mesh scaffold [Yang et al. 2022; Yariv et al. 2023]
or texture extraction [Chen et al. 2023b; Tang et al. 2023b] from the
neural field are preferred to achieve higher render speed or rather
fine-grained control. This type of work acts as a “bridge” between
neural and traditional representations in order to improve perfor-
mance using the classical graphics pipeline. A small portion of the
work focuses on creating a mixed render pipeline for neural 3D
scene composition tasks, combining traditional render techniques
like ray tracing [Qiao et al. 2023], shadow mapping [Gao et al. 2024],
and ambient occlusion [Gao et al. 2023]. There are also a few works
that focus on creating a compositional scene with generative models
like diffusion models [Po and Wetzstein 2023].

None of those works except Neural Imposter [Liu et al. 2023b] and
SeamlessNeRF [Gong et al. 2023] focus on example-based modeling
by stitching multiple part NeRFs. However, part objects in Neural
Imposter are just placed together without any appearance blending,
which cannot support a general case of 3D modeling. SeamlessNeRF
achieved harmonious results on a small-scale synthesis dataset, mak-
ing it the first work to discuss seamless example-based modeling
with neural techniques today. However, SeamlessNeRF cannot han-
dle real-world cases when the condition becomes more complex,
nor can it perform interactive editing, which is commonly required
in example-based modeling. On the contrary, our approach over-
comes these limitations, performs well in real-world scenarios, and
supports interactive editing using Gaussian fields.

2.3 3D Gaussians
3D Gaussian Splatting [Kerbl et al. 2023] is a point-based render-
ing method that has recently gained popularity [Chen et al. 2023a;

Huang et al. 2024; Li et al. 2024; Liang et al. 2023; Tang et al. 2023a;
Yang et al. 2024a,b] due to its realistic rendering and significantly
faster training time than NeRFs. Compared to the implicit repre-
sentation of NeRF, 3DGS is more advantageous for editing tasks.
The superior advance lies in the fact that, unlike previous work that
embedded an object in a certain neural field (e.g., learnable grid or
MLP network), once clusters of Gaussians are optimized, they can be
easily fused together and fed into the rasterizer. The 3DGS pipeline
was born with an intrinsic property suitable for composition.

3 SEAMLESS GAUSSIANS
Our approach starts with segmenting interesting parts from pre-
trained Gaussian scenes. After acquiring target and source models
represented by Gaussians, we carefully transform them to obtain a
semantically meaningful composite. Then we optimize the target
objects to achieve a harmonious composite through a two-phase
(sampling-based cloning and clustering-based tuning) scheme. All
these processes can be run interactively and previewed in real-time
with our well-tailored GUI design.

3.1 Segmenting and Transforming Gaussians
Segmentation is the first step in example-based modeling, which
involves picking out interesting parts as the components of the final
artwork. Previous works have performed this task by providing
guidance using 2D mask [Cen et al. 2023; Mirzaei et al. 2023] or
injecting semantic label [Kerr et al. 2023] into a neural field. Now,
benefiting from Gaussian representation (resembling point cloud),
segmentation can become more practical at a finer-grained level. In
our pipeline, we show that a combination of a simple bounding box
and a user brush can work very well for a clean mask (see Fig. 14).
For instance, we can mask the sculpture with a brush to match the
shape of Santa’s face (see Fig. 2).
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(c)(a) (b)

Fig. 3. For a Gaussian point in the target field, its (a) K-nearest neighbors
in the source field can be leveraged to justify whether this point belongs to
the intersection boundary region. We use the boundary of (b) as an example
to demonstrate the effectiveness of this strategy, as shown in (c).

Transformation aims at placing multiple interesting parts G𝑖 rep-
resented by Gaussians to form a semantically meaningful composite
M, which can be denoted as:

Gglobal
𝑖

= 𝐹 (Glocal𝑖 |q̂𝑖 , t𝑖 , 𝑠𝑖 ), G𝑖 ∈ M (1)

where 𝐹 is the rigid transformation applied on one part of Gaussians
with rotation q̂𝑖 (represented in quaternion), translation t𝑖 , and scale
s𝑖 , transforming the part from its local space to the global space.
Specifically, the partial attributes of each G should be modified,
which includes position x, scaling s, rotation q (in quaternion), and
feature f (represented as spherical harmonics). The position and
scaling can be performed trivially, while the transformed rotation
q′ and feature f ′ can be expressed as:

q′ = qq̂,

f ′ = 𝑀𝑏𝑎𝑛𝑑𝑠 (f | q̂),
(2)

where𝑀𝑏𝑎𝑛𝑑𝑠 means we use a set of matrices to rotate each band
of SH coefficients introduced by [Ivanic and Ruedenberg 1996].

3.2 Boundary Condition by KNN Analyzing
After transformation, certain points in one field approach another
field (see Fig. 3), forming intersection boundary regions between
all Gaussians. For the sake of simplicity, we will use two Gaussians,
source field and target field, to demonstrate our approach.

Before optimization, the boundary points in the target field must
be identified, as this is the critical and initial condition for harmo-
nization. For each Gaussian point in target field T , we search its
K-nearest neighbors in source field S, which can be denoted by:

{𝑏𝑖 }𝐾 = 𝐾𝑁𝑁
S
(𝑎), 𝑎 ∈ T , 𝑏𝑖 ∈ S (3)

where 𝑎 is a point in the target field, and 𝑏𝑖 is a point in the source
field. Whether a point 𝑎 belongs to boundary 𝜕𝐵 can be identified
as 𝑎 ∈ 𝜕𝐵 iff.:

1
𝐾

𝐾∑︁
𝑖

|𝑏𝑖 − 𝑎 | < 𝛽 and 𝑜 (𝑎) > 𝜏, (4)

where 𝑜 (𝑎) is the opacity of that Gaussian point, |𝑏𝑖 − 𝑎 | is the
Euclidean distance between 𝑏𝑖 and 𝑎. 𝜏 and 𝛽 are thresholds and we
empirically set 𝜏 to 0.95, 𝛽 to 0.05 × 𝐿. 𝐿 is the size of the composite.
(e.g. measured by the bounding box). An additional method for a
better boundary condition on real-world data is that we discard
outliers in both fields (e.g. some Gaussian points are far from the
others, which may occur in some scenes).

Fig. 4. ablation study on the color loss in the S-phase. Without color loss,
the propagation is inefficient and will not begin. The cases shown above
have been running for more than twice as long, but they are still trapped
in insufficient propagation. It is because, without color loss, only a small
number of points’ features need to be updated at first, as opposed to shared
weights in an MLP applied to all points. That minor “forces” cannot drive
the overall minimization of the gradient loss.

We calculate referenced features for these boundary points in
order to confirm the boundary condition. For each 𝑎 ∈ 𝜕𝐵, its target
feature is:

f̂ (𝑎) = 1
𝐾

𝐾∑︁
𝑖

f ′ (𝑏𝑖 ), 𝑎 ∈ 𝜕𝐵, 𝑏𝑖 ∈ 𝐾𝑁𝑁
S
(𝑎) (5)

where f ′ (𝑏𝑖 ) is the feature of 𝑏𝑖 after transformation. To achieve
this boundary condition, we optimize boundary points toward their
target features:

L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 =
∑︁
𝑎∈𝜕𝐵

f ′ (𝑎) − f̂ (𝑎)2
2
, (6)

where f ′ (𝑎) is the feature of 𝑎 and we directly apply this loss on SH
coefficients.

3.3 Sampling-based Cloning
We propose sampling-based cloning as our “S-phase” in optimiza-
tion. The core idea is how to seamlessly propagate the style in
boundary through the remaining points in the target field while
preserving its rich content. In contrast to a regular grid suitable
with a gradient-based strategy in SeamlessNeRF [Gong et al. 2023],
Gaussian points are irregularly and discretely distributed in 3D
space. As a result, alternative approaches need to be explored. A
straightforward idea is that given a point in target field T , one can
calculate the feature difference between that point and its neighbors
in T , resembling “Laplacian coordinates”. Then, one can use that
“difference” as the regularizer while minimizing L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 . However,
this naive approach may fail even before propagation begins (see Fig.
4). Furthermore, the boundary’s structural characteristics (such as
the bottle-bell intersection in the right-upper corner of Fig. 9) neces-
sitate seamless cloning, which significantly improves the stitching
quality.
Hence, we propose an effective sampling strategy to explicitly

propagate features for each remaining point outside the boundary.
The core idea lies in the way of searching several “driven points”
for a candidate. The color of the candidate is driven by those points.



Towards Realistic Example-based Modeling via 3D Gaussian Stitching • 5

scene collection w/o opt.

Fig. 5. ablation study on the effectiveness of gradient loss for different weights. Experiments show that higher weights can help to preserve more content
while preventing harmonization.
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Fig. 6. ablation study on sampling-based cloning (S.) and clustering-based
tuning (T.). Here, “Both” means the full scheme.
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Fig. 7. Ablation study on the impact of mapping function 𝜙 in the S-phase.
Random effects make composition more realistic.

For each 𝑎 ∈ T − 𝜕𝐵, the optimizing target of its color in direction
d𝑎 is:

f̂ (𝑎, d𝑎) =
1
𝐾

𝐾∑︁
𝑖

f ′ (𝑏𝑖 , d𝑏 ), 𝑎 ∈ T − 𝜕𝐵, 𝑏𝑖 ∈ 𝐾𝑁𝑁
𝜕𝐵
(𝜙 (𝑎)) (7)

where f (𝑎, d𝑎) means sampling SH color in view direction d𝑎 (from
point 𝑎 to camera), the same as f (𝑏, d𝑏 ). The camera centers are
uniformly sampled from the surface of a sphere centered on the
composite object’s origin. It is important to note that the sampling
strategy 𝐾𝑁𝑁 (𝜙 (𝑎)) maps the locations of nearby candidate points
𝑎-s to the correlated neighboring “driven points” and inherits the

continuity of the textures from those “driven points”. We use 𝜙 (𝑥) =
𝑥 + 𝑠𝑖𝑛(𝛾 · 𝛿𝑥) to add random effect by disturbing KNN searching
(see Fig. 7), where 𝑥 is the position of 𝑎, 𝛿𝑥 is the distance between
𝑎 and its nearest 𝑏𝑖 in boundary, and 𝛾 is empirically set to 10. A
larger 𝛾 is suitable for higher structural frequencies. In this way, we
can synthesize structurally aware stitching results. With Eq. (7), we
add a color loss to the S-phase:

L𝑐𝑜𝑙𝑜𝑟 =
∑︁

𝑎∈T−𝜕𝐵

f ′ (𝑎, d𝑎) − f̂ (𝑎, d𝑎)2
2
, (8)

so that the color of those candidates can be optimized towards their
target to achieve our explicit feature propagation.
To preserve the original rich content in T , we present a more

efficient gradient loss calculated in the local space of T , leveraging
the guidance in 2D screen space:

L𝑔𝑟𝑎𝑑 =
∑︁
𝑥∈𝐼

∇𝑥 𝐼 T (𝑝) − ∇̂𝑥 𝐼 T (𝑝)2
2
,

𝐼 T (𝑝) = R(G𝑙𝑜𝑐𝑎𝑙T , 𝑝),
(9)

where 𝑝 is the randomly sampled camera in the local space of target
field T , 𝐼 is the rendered color image by rasterizer R of 3DGS. We
pre-calculate ∇̂𝑥 𝐼 for each camera with the Sobel operator [Sobel
et al. 1968] before the optimization starts. We found that supervising
gradients in screen space is more efficient than the straightforward
one, as shown in Fig. 11.

3.4 Clustering-based Tuning
While S-phase optimization is effective in preserving local color
consistency, relying solely on it may lead to misaligned global ap-
pearance, such as uneven brightness, hues, and saturation (See Fig.
6). Therefore, we propose using a clustering extracted color palette
to perform global tuning, which we refer to as the "T-phase" in
optimization. This approach enhances the overall harmony of the
composite by performing dynamic matches to a palette. To imple-
ment the T-phase, we first aggregate and cluster the color of the
source field from various angles:

{c𝑖 }𝑁 , {𝑤𝑖 }𝑁 ← A(G
𝑔𝑙𝑜𝑏𝑎𝑙

S ), (10)

where c𝑖 is the color (cluster center) in palette, 𝑤𝑖 is the sample
percentage occupied by the center, andA stands for our aggregation
algorithm. Our approach, inspired by Li et al.’s work [Li et al. 2023b],
uses a streaming method to accelerate color aggregation. We start
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Fig. 8. Results for more real-world data from the BlendedMVS [Yao et al. 2020] and Mip360 [Barron et al. 2022] datasets, demonstrating that our method can
produce realistic effects in real-world scenarios.

with three bins, collect color samples from a random view, and
calculate the new color center for each bin by averaging the original
center and new samples collected in it. The number of bins expands
to accommodate far-off samples. Centers expire after 20 iterations
with no sufficient votes. We repeat this process until all color centers
are stable.
Once the aggregation process finishes, those color centers will

form a palette (see Fig. 2). We employ the following loss in our
T-phase as a pixel-wise summation:

L𝑡𝑢𝑛𝑒 =
∑︁
c∈𝐼 ′

𝑤𝜒𝑐

c − c𝜒𝑐 22 , 𝐼 ′ ← {𝐼 T𝑥 (𝑝) |𝛼 (𝑥) > 0.95},

𝜒𝑐 = argmin
1≤𝑖≤𝑁

{∥c − c𝑖 ∥2 −𝑤𝑖 } ,
(11)

where 𝑝 is the randomly sampled camera in the global space, and 𝛼 is
the alpha mask corresponding to 𝐼 T . Both 𝛼 and 𝐼 T are rendered by
rasterizer R. 𝜒 represents the target bin’s index, and it is determined
by both the distance from color centers and the probability density
of bins. Our final total loss function can then be expressed as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 + L𝑐𝑜𝑙𝑜𝑟 + 𝜆1L𝑔𝑟𝑎𝑑 + 𝜆2L𝑡𝑢𝑛𝑒 , (12)

where both 𝜆1 and 𝜆2 are empirically set to 2 in our experiments.

4 EXPERIMENT
To test the effectiveness and generality of our approach, we con-
ducted experiments on a variety of fascinating 3D objects. We in-
teractively built 21 composite results, comprising a total of 39 part
models: 17 from BlendedMVS [Yao et al. 2020], 4 from Mip360 [Bar-
ron et al. 2022], 16 from SeamlessNeRF datasets, and 2 created by
ourselves in a graphics engine. For more results or the implementa-
tion details, please refer to our supplementary materials.

4.1 Qualitative Comparison
We compare our method to SeamlessNeRF [Gong et al. 2023], the
first and most recent work that approaches our goal. Fig. 9 depicts
three comparison cases. In the first case (clay & bread), Seamless-
NeRF failed to achieve high-level geometry editability and struggled
with artifacts caused by implicit representation. In the second case
(bottle and bell), SeamlessNeRF failed to maintain a harmonious
seamless effect due to applying the gradient-based strategy on the
complex boundary. In the third case, SeamlessNeRF failed to propa-
gate sufficient color tones due to the complex gradients in the bound-
ary. In addition, we show that the 2D-guided style-transfer method
[Nguyen-Phuoc et al. 2022] cannot produce a seamless stitching
effect, as shown in Fig. 10. On the contrary, ours can handle all of
these situations while producing harmonious results.

4.2 Quantitative Comparison
Currently, there is neither a specialized dataset providing ground
truth nor an established metric to assess the realism of a 3D model’s
appearance, making it challenging to evaluate the effectiveness of
our approach quantitatively. Nevertheless, we force an evaluation
utilizing VQA(Video Quality Assessment) methods, as outlined by
Wu et al. [2023], and explored the use of 2D projection in video
display for assessment purposes. Our results, presented in Tab. 1,
demonstrate that our average score surpasses the baseline. For a com-
prehensive understanding of the quantitative experiments, please
refer to our supplementary materials.

4.3 Ablation Study
Effectiveness of 2D Gradient Loss. Fig. 5 depicts the effect of gra-

dient loss at various weights. Higher weights can help to preserve
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ours SeamlessNeRF
VQA average score ↑ 0.784 0.753

Table 1. Quantitative comparison between ours and the baseline.
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Fig. 9. Comparisons between our approach and the baseline methods [Gong
et al. 2023]. SeamlessNeRF failed in all of these real-world scenarios.

Fig. 10. We show that these style-transfer results [Nguyen-Phuoc et al.
2022] fail to achieve our effect. Here, we re-implement SNeRF’s strategy
[Nguyen-Phuoc et al. 2022] based on Gaussians to produce results above.

more content while obstructing harmonization. Fig. 11 demonstrates
that 2D gradient loss with Sobel operator is significantly more ef-
fective than the simple one mentioned in Sec. 3.3.

Functionality of S-phase and T-phase. We demonstrate the efficacy
of our two-phase scheme in Fig. 6. The S-phase aids in seamless
boundary formation, while the T-phase aids in global harmonization
when only the S-phase is present.

Effectiveness of Sampling Strategy for View-dependent Effects. We
ablate the sampling strategy in the S-phase (see Fig. 12) to show
that view-dependent effects can be properly propagated using this
strategy instead of random sampling.

Fig. 11. ablation study on two kinds of gradient loss. The 2D gradient
supervision (upper row) is more effective than the straightforward one since
it focuses on the surface instead of the whole space.

w/o  sample strategy w/  sample strategy

Fig. 12. Ablation study on keeping view-dependent effects by sampling
strategy in the S-phase. With that strategy used in Equ. (7), the upper-view
color of paint on bell is properly propagated.

4.4 Editor and Application
To enable a practical and user-friendly workflow, we created an
interactive GUI editor that can control and visualize any procedure
in the entire process in real-time, including Gaussian segmentation
and transformation, boundary identification, and optimization (see
Fig. 16 and refer to the supplementary video for more details). Our
framework can generate high-fidelity and seamless results across a
wide range of real-world scenarios, providing distinct advantages
in the direct creation of imaginative 3D models from reality.

5 CONCLUSIONS AND LIMITATIONS
We have developed a highly efficient and effective interactive frame-
work for creating realistic 3Dmodels. The method involves stitching
Gaussian components seamlessly to create a harmonious 3D model
that is an accurate representation of the real world. Our approach
has been tested on real-world datasets and has proved to be capa-
ble of handling complex cases with a user-friendly interface. This
presents a promising avenue for example-based modeling directly
from the real world.

Limitations and Future Work. Currently, our work is unable to
transform Gaussian models in a non-rigid manner, which may make
it difficult to develop more imaginative cases. To enable a more flex-
ible composition, we can use deformation methods such as ARAP
[Igarashi et al. 2005] in the future. Furthermore, achieving a con-
sistent lighting effect can help improve composition quality under
intense lighting.
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Fig. 13. Showcase in 3D with background. To demonstrate their natural appearance, we insert these composite models back into their unbounded backgrounds
(the floaters are caused by the problem of 3DGS under unbounded scenes).

(a) w/ bounding box (b) w / opacity > 0.1 (c) w/ brush by user (d) 2D supervision

Fig. 14. We describe the segmentation workflow using our GUI and compare it to the result (d) from 2D mask supervision (for example, the Segment Anything
Model (SAM) [Kirillov et al. 2023]). To segment with SAM, we re-implement the inverse-mask [Cen et al. 2023] strategy on 3DGS. A simple (a) bounding box
with a (b) interactive (c) brush is demonstrated to be more practical in real-world scenes with numerous floaters. For more information, please refer to our
supplementary video.

Fig. 15. We describe the transformation workflow using our GUI, as well as how to remove unwanted parts during composition. Users can adjust models
to create a semantically meaningful composite, and then use a brush to remove unwanted parts, allowing for a more fine-grained composition. For more
information, please refer to our supplementary video.
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0s 30s 1min 2min 3min 4min
+ T-phaseS-phase

0s 30s 1min 2min 3min 4min
+ T-phaseS-phase

Fig. 16. Visualize how our optimization gradually and efficiently converges. In our comparison, SNeRF [Nguyen-Phuoc et al. 2022] takes over 10 hours, while
SeamlessNeRF [Gong et al. 2023] takes more than an hour. For more information, please refer to our supplementary video.

Fig. 17. We demonstrate another compositing result using data from both the real world and the graphics engine. This additional case demonstrates our
approach’s versatility in dealing with both real and computer-generated models, validating its practical applicability. The two CG models were obtained from
websites and rendered in Blender 3D on our own.
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