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A Overview

This supplementary document provides some implementation details and further results that accom-
pany the paper.

• Section B introduces the differences between the dataset used by our method and those used
by previous methods.

• Section C introduces more details of the SG approximation for the rendering equation.

• Section D provides additional results, including more visualizations and results on more
datasets.

B High-illumination Dataset

Currently, neural field-based inverse rendering methods, such as InvRender [11], NeRFactor [10],
and TensoIR [5], generally use scenes with almost no high-intensity ambient light (See Fig. 3). The
advantage of these scenes is that the object’s BRDF estimation is not affected by self-occlusion
shadows, making albedo and color quite similar. As a result, even if each part of the BRDF estimation
is somewhat messy, plausible results can still be obtained. However, when the scene has intense
illumination and shadows, these methods will fail to correctly model the object’s BRDF. Therefore,
to more accurately evaluate the robustness of inverse rendering, we choose a more challenging
high-illumination dataset.

C SG Approximation for the Rendering Equation

Following the methodology from [9], we employ the inner product of SGs to approximate the
computation of the rendering equation. The position x is dropped in the following equation due to the
distant illumination assumption. Specifically, the term ωi · n is approximated by a SG as follows:

ωi · n ≈ G (ωi; 0.0315,n, 32.7080)− 31.7003. (1)

As for the specular component fs, we employ the simplified Disney BRDF model as previous methods
[2, 6, 1]:

fs (ωo,ωi) = M (ωo,ωi)D(h),

h =
ωo + ωi

∥ωo + ωi∥2
,

(2)

where M represents the Fresnel with shadowing effects, and D is the normalized distribution function.
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To simplify the computation, we assume an isotropic specular BRDF, and adapt D and M as follows:

M (ωo,ωi) =
F (ωo,ωi)G (ωo,ωi)

4 (n · ωo) (n · ωi)

F (ωo,ωi) = s+ (1− s) · 2−(5.55473ωo·h+6.8316)(ωo·h),

G (ωo,ωi) =
ωo · n

ωo · n(1− k) + k
· ωi · n
ωi · n(1− k) + k

,

k =
(r + 1)2

8
,

D(h) = G

(
h;n,

2

r4
,

1

πr4

)
,

where s ∈ [0, 1]3 is the specular factor, and r denotes the roughness. Finally, we can compute the
rendering equation through the fast inner product of SGs [8].
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Figure 1: Other results of our method. In each scene, we present the input ground-truth image
(a), our rendering result (b), normal (c), light (d), albedo (e), and roughness (f) obtained through our
method. These experiments illustrate the generalizability of our method across diverse datasets and
demonstrate its ability to produce high-quality results.
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Figure 2: Helmet Relighting. Our method achieves high-quality relighting results in scenarios with
specular highlights and slight specular reflections.
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Figure 3: Dataset Comparison. We choose a more challenging high-illumination dataset, which
exposed the inability of previous neural field-based inverse rendering methods to decouple shadows
from the object’s PBR materials.
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Figure 4: Hotdog Relighting. Our method achieves high-quality relighting results in scenarios with
severe shadows.
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Method
Hotdog Lego Helmet

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NVDiffrec 20.60 0.8872 0.1777 18.52 0.8299 0.1616 12.06 0.7866 0.2274
InvRender 15.76 0.8575 0.2029 20.75 0.8606 0.1656 19.50 0.8761 0.1697
TensoIR 16.01 0.8496 0.2047 20.74 0.8493 0.1541 16.95 0.8341 0.1759

Relightable-GS 15.34 0.8453 0.2111 20.07 0.8030 0.1580 14.97 0.7946 0.1963
GS-IR 9.72 0.6382 0.3139 13.03 0.6860 0.2386 13.72 0.7774 0.2538

Ours-no aces 22.24 0.8582 0.1779 22.00 0.8675 0.1497 19.98 0.9173 0.1202
Ours-no rve 19.04 0.8487 0.1489 20.17 0.8659 0.1437 14.30 0.8769 0.1493
Ours-Log 19.01 0.8570 0.1560 21.43 0.8596 0.1504 21.87 0.9078 0.1012

Ours 24.25 0.9185 0.0970 24.63 0.9175 0.1071 24.14 0.9427 0.1122
Truck Stool Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NVDiffrec 19.59 0.9010 0.1437 13.69 0.7213 0.2722 16.89 0.8252 0.1965
InvRender 21.68 0.9023 0.1440 17.90 0.8822 0.1440 19.12 0.8757 0.1652
TensoIR 24.06 0.9375 0.1071 24.81 0.8692 0.1269 20.51 0.8679 0.1537

Relightable-GS 19.17 0.8720 0.1528 18.62 0.8567 0.1296 17.63 0.8343 0.1696
GS-IR 19.03 0.8379 0.1729 18.92 0.8695 0.1061 14.88 0.7618 0.2171

Ours-no aces 20.81 0.9177 0.1111 21.15 0.8647 0.1518 21.24 0.8851 0.1421
Ours-no rve 20.59 0.9200 0.1108 18.46 0.8814 0.1511 18.51 0.8786 0.1408
Ours-Log 24.04 0.9418 0.0997 19.29 0.8755 0.1395 21.13 0.8883 0.1294

Ours 27.46 0.9592 0.0647 24.98 0.9136 0.1051 25.09 0.9303 0.0972

Table 1: Quantitative albedo comparison on synthetic dataset. We compare our method to several
previous approaches: NVDiffrec [4], InvRender [11], TensoIR [5], Relightable-GS [3] and GS-IR [7].
We report PSNR, SSIM, LPIPS(VGG) and color each cell as best , second best and third best .

D Additional Results

More qualitative results. Our method can effectively remove shadows baked into albedo and
roughness, thanks to our accurate modeling of each decomposition component. Therefore, our
method can certainly handle scenes with less intense lighting. Fig. 1 shows the results of our method
on real-world datasets and some synthetic datasets, including scenes with shadows and specular, as
well as diffuse objects. Our method can robustly perform inverse rendering in any situation without
baking shadows and illumination into PBR materials.

Per-scene albedo results. We present the complete metrics of our method compared to other
methods in Tab. 1. The estimated albedo in our method surpasses existing SOTA methods in every
synthetic scene.

More relighting. We show more relighting results in Fig. 2 and Fig. 4. The two scenes demonstrate
that our method can accurately estimate the BRDF of the object under scenes with specular highlights
and severe shadows.

Additional comparison with NVDiffrecMC. We show more albedo, roughness, and environment
map comparison with NVDiffrecMC [4] in Figs. 5-7.

Visualization and evaluation on tone mapping. We first visualize the vanilla ACES and sRGB
tone mapping in Fig. 8, indicating that ACES curve has much wider input range. Then in Fig. 9, we
show the scene-specific tone mapping curve with different γ, enabling the ACES curve to fit other
settings with different tone mapping methods. Finally, we evaluate the optimized ACES curve (with
γ = 0.42) in chessboard scene with GT tone mapping (sRGB) in Fig. 10. The results show that our
scene-specific ACES tone mapping can stretch to sRGB curve, demostrating the effectiveness of our
method.
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Figure 5: Albedo comparison with NvDiffRecMC on synthetic scenes. NvDiffRecMC cannot
achieve the decouple of shadow, indirect illumination, and the PBR materials of the objects.
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Figure 6: Roughness comparison with NvDiffRecMC. NvDiffRecMC cannot obtain high-quality
roughness in high illumination scenes.
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Figure 7: Environment map comparison with NvDiffRecMC.

Figure 8: Comparison on ACES and sRGB curve.
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Figure 9: Visualization of ACES tone mapping with different γ.

Figure 10: Evaluation tone mapping in chessboard. The ACES tone mapping with γ = 0.42
matches well with the sRGB curve.
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